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Abstract

Novel shape generation is a critical procedure across fields spanning computer
graphics to robotics. Unfortunately, current methods for generating 3D shapes are
data inefficient due to their inability to utilize the inherent SO(3) symmetry in 3D
data. Therefore, we propose a simple, SO(3) equivariant, auto-encoding neural
network to test the feasibility of building larger SO(3) equivariant shape generation
models. In order to capture the SO(3) symmetry of our input data, we represent
3D shapes as the coefficients of the spherical harmonic basis functions. Then, to
perform SO(3) equivariant latent space traversal and produce coherent outputs,
we design a rotation equivariant interpolation method that distinguishes between
the rotation and shape components of the latent space. We demonstrate robust
reconstruction of a dataset of 100 randomly generated boxes and show coherent
traversals of the latent space when trained on two and 100 randomly selected
objects.

1 Introduction

Automated 3D object generation has the power to revolutionize fields spanning 3D content creation,
virtual reality, and robotics. However, current methods are limited in speed and computational
efficiency. A large factor in this inefficiency is the diverse set of SO(3) poses that 3D objects can
take. Most methods acting on data types such as point clouds, meshes, voxel grids must use data
augmentation to ensure that objects are generated in both diverse shapes and poses, increasing the size
of the input space that a network must learn. Furthermore, work in generating implicit representations
such as neural radiance fields often struggle with consistency between different orientations of the
same object.

Spherical harmonic representations of 3D shapes have the potential to alleviate this issues. Specifically,
an arbitrary star-shaped signal on the sphere can be encoded to an arbitrarily high degree of precision
by the coefficients of the spherical harmonics up to some desired l. This representation has the benefit
of being SO(3) equivariant, mirroring real-world objects. SE(3) equivariance can be trivially added
by mean centering an object to be encoded.

Leveraging the spherical harmonic datatype, we present a novel, SO(3) equivariant, auto-encoding
architecture to test the feasibility of generating 3D shapes using equivariant architectures and the
spherical harmonic basis. Furthermore, we develop an SO(3) equivariant interpolation strategy to
effectively separate the rotation and shape components of the latent space. To simplify the problem,
we run reconstruction and interpolation on a dataset of 100 boxes and parameterize these by the
coefficients of the first l spherical harmonics. A graphical illustration of our problem setup can be
found in Fig 1. Through our experiments, we prove that our architecture is approximately SO(3)
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equivariant, demonstrate robust reconstruction of the boxes dataset, and show novel object generation
with our equivariant latent space interpolation. We also provide commentary on the training dynamics
of the architecture and the effect of the latent space dimension.

Figure 1: Problem Overview – As a first step in building SO(3) equivariant 3D generative models, we seek
to demonstrate equivariant interpolation between objects from a dataset of boxes. This interpolation should
distinguish between the rotation and shape components of the objects, acting as if the objects were rotated to a
canonical form, linearly interpolated, then rotated back. The canonical form should be learned by the network.

2 Related Work

2.1 3D Shape Generation

The field of 3D shape generation has seen substantial interest in recent years. Works can be split
into the data type produced and the method to used to generate the data. Some of the earliest models
are those based on Generative Adversarial Networks [1] such as Henzler, Mitra, and Ritschel’s
PlatonicGAN [2]. This method uses a generator to generate an object represented on a voxel grid,
which is then rendered and passed into a discriminator. In recent time, pure voxel grids have fallen
out of favor due to high memory consumption and correspondingly low resolution. Similarly, GANs
have largely been superseded by diffusion based models [3] due to the poor training characteristics
exhibited by GANs.

Following the release of Neural Radiance Fields (NeRF) [4], a number of methods have focused on
generating data generated by implicit fields. Implicit fields have the benefit of higher resolution for a
given memory amount and can model lighting and geometric properties. Schwarz et al. introduce
GRAF [5] which produce radiance fields from 2D images using a GAN style architecture. PiGan [6]
also produces radiance field outputs but builds on the related work of Sitzmann et al. on Implicit
Neural Representations with Periodic Activation Functions [7]. Schwarz et al. build on GRAF
with VoxGRAF [5], parameterizing the radiance field as a sparse voxel grid for higher resolution
synthesis. While these methods produce high fidelity visual results, training and inference is often
computationally intensive due to the need to render the radiance fields into an image for evaluation
and back propagation. This limitation can be partially remedied by switching to voxel based implicit
representations [8] or to Gaussian Splatting methods [9].

Concurrent with the release of NeRF was the introduction of Diffusion Models for image synthe-
sis [3]. This spurred a number of diffusion based 3D shape generators. These models commonly
work by synthesizing multiple views of the same object, given a reference image or input prompt.
These views can then be used to train a neural radiance field. Among these are DreamFusion [10],
HoloDiffusion [11], and MVDream [12]. Changing data types from 2D images to point clouds, Lou
and Hu use a diffusion model to directly generate point clouds [13]. A large challenge with image
based diffusion models is devising methods to ensure view consistency between multiple generated
views.

To the authors’ knowledge, no work uses deep learning to produce any 3D objects parameterized by
the spherical harmonic basis.
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2.2 SO(3) Equivariant Architectures

As discussed previously, a large number of models are plagued by difficulties concerning SO(3)
equivariance and multi-view consistency. Rather than building equivariance through data augmenta-
tion, recent work on SO(3) equivariant architectures draws from the group theoretical foundations
of the SO(3) rotation group to build network architectures that are equivariant to rotations in 3D
space. The earliest works in the field focused on building spherical CNNs as presented by Cohen et
al [14] and Esteves et al. [15]. Clebsch-Gordan Nets [16] extend this by using the Clebsch-Gordan
transform in the spherical harmonics basis and thereby avoided the repeated Fourier transformations
used in Spherical CNNs. Tensor Field Networks [17] introduced an architecture that works well
for point clouds. By using point convolution and message-passing, this architecture prevents the
need to approximate the input by a grid which reduces the quality. Subsequent works expanded the
set of equivariant features. These include 3D Steerable CNNs [18] and SE(3) Transformers [19].
More recently, Vector Neurons [20] design equivariant layers as a plug-in replacement of layers in
otherwise non-equivariant networks.

Due to the exploratory nature of this work, we most closely base our model on the simplest variations
of these architectures, namely Spherical CNNs. We also discuss empirical training dynamics of our
Spherical CNN based approach in comparison to a Clebsch-Gordan style network.

2.3 SO(3) Equivariant Generative Models

While no current works demonstrate generation of 3D shapes, a number of works use application
specific SO(3) equivariant models to generate data through an autoencoding style model. Most closely
related to our work is the work by Costa et al. on Protein modeling [21]. This work focuses on
modeling protein structures with SO(3) equivariant autoencoders and build a latent diffusion model
to generate these proteins. Our work differs by tailoring our architecture to the domain of 3D shape
generation as opposed to atomic systems.

3 Background

This work requires a basic understanding of group theory with a special emphasis on infinite groups.
In particular, we represent objects as functions on the sphere parameterized by in the spherical
harmonic basis of SO(3). Correspondingly, we design our architecture to be SO(3) equivariant.

3.1 Rotation Groups

A group, G, is defined as a collection of elements such that for all g, h ∈ G, gh ∈ G. Furthermore,
elements are associative, there exists an identity element e, and all elements have an inverse such that
gg−1 = e. Among many applications, groups can be used to represent symmetries in space. We are
particularly interested in rotation equivariance. Therefore, we pay special attention to the group of
rotations in n dimensional space, the special orthogonal group SO(n). In terms of linear algebra, this
group can be represented by the collection of all distance preserving (orthogonal) n× n matrices that
preserve a fixed point and have a determinant of 1. When n = 3, this infinite group, SO(3), contains
all possible rotations in 3D space.

3.2 Spherical Harmonics

Critical to our work is the representation of 3D data. In contrast to prior works, we represent objects
in the spherical harmonic basis. The spherical harmonics are an infinite set of functions that form
a basis for functions on the surface of the sphere (on S2). They are referred to by indices l and m
where l ∈ N and −l ≤ m ≤ l for a given pairing of l and m, Y l

m. Given an arbitrary signal on S2,
one can uniquely decompose this signal into a set of coefficients for the spherical harmonics up to
some lmax where a higher lmax results in a higher resolution representation as shown:

f̂ lm =

∫
S2

f(w)Y l
m(w)dw
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A closed object A is star-shaped if for all p ∈ A, we have α ∈ [0, 1] → αp ∈ A. We can encode
any star-shaped object by creating a signal on S2 such that the value of the signal corresponds to the
distance of the surface of the object from the center of the sphere. Visually, one can imagine mean
centering an object, then casting an infinite number of rays from the origin outwards. The length of
the ray when it intersects the object is the value of the function at the location on the unit sphere
intersected by the ray. So long as each ray only intersects the object once (the star shaped constraint),
any object can be encoded to an arbitrarily high degree of precision.

4 Methods

Our primary aim is to build a system to generate new objects parameterized by the coefficients of
the spherical harmonic basis. We accomplish this by training an autoencoder to reconstruct objects
parameterized by the coefficients of the spherical harmonics. Furthermore, we construct the network
such that the latent space of the network is SO(3) equivariant and, when traversed, produces smooth
changes in output. Given a rich enough latent space, we theorize that by sampling the latent space,
we will be capable of generating new data consistent with the training data.

Our approach solves three key challenges. The first is the ability to reduce and increase the dimension
of the latent space while preserving equivariance. This includes a choice on how the dimension
of the latent space is actually defined. The next is a way to traverse the latent space in a way that
distinguishes the rotation and shape components of the object. The final challenge is to devise a loss
that encourages the network to reconstruct the object. We also include details on how to convert
existing mesh based data to the spherical harmonic coefficients.

4.1 Data Representation

As shown in Fig 2, to transform a mesh to a spherical harmonics representation of a signal, we (1)
centralize the mesh, (2) view the signal f : S2 → R as the depth of the mesh at each direction
which we calculate using ray casting, and (3) numerically compute the following integral to get the
coefficients of spherical harmonics. This follows from the method described in [14].

f̂ lm =

∫
S2

f(w)Y l
m(w)dw

Additionally, we normalize the coefficients using norm normalization. It is worth mentioning that the
standard grid on S2 is not uniform in surface thus one cannot calculate the integral by averaging the
values on the grid. However, with appropriate correction, we found that given a dense enough grid,
we could still generate reasonable looking spherical harmonic representations of our input meshes.

Figure 2: Mesh to Spherical Harmonics – We center the mesh, then cast rays along a α, β grid to get the
surface distance from the origin. This grid is used to calculate the spherical harmonic coefficients to degree
lmax. We set lmax = 4
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✅

❌

Figure 3: Spherical CNN Autoencoder Architecture – As the layers proceed in the encoder, the
number of channels of each irrep increases while the degree of irreps decreases. The architecture of
the decoder mirrors the encoder.

4.2 Network Architecture

As illustrated in Fig 3, our network consists of an autoencoder on the spherical harmonic coefficients
representing the object’s shape as an input. When representing the object, we use irreps up to
lmax = 4 in our design. Increasing lmax is a trade-off between the quality and the size of the
network.

Our first step is to lift our representation from S2 to SO(3) as the convolution between two spherical
signals (e.g. [f ⋆ h](R)), lives in SO(3). The tensor product in this representation is a generalized
form of convolution [16].

We use a sequence of transformation blocks to change the degree, lmax, of irreps and the number of
channels. Each block consists of a linear layer, followed by an SO(3) activation layer, followed by
batch normalization.

• The linear layer changes the number of channels while preserving the degree of irreps.

{Al,k}l → {
∑
k

wkA
l,k}

• The SO(3) activation layer changes lmax. SO(3) activation evaluates the current represen-
tation on SO(3), applies a point-wise non-linearity, and projects the result back to a new
representation with a new lmax. This can be viewed as an up-sampling (in the decoder) or a
down-sampling (in the encoder) mechanism. We use ReLU as the non-linear function, ϕ.

{Al,k}l → {
∫
SO(3)

ϕ(
∑
l,k

Al,k · Y l(x))Y j(x)dx}j

• The batch normalization layer is required for training. Our experiments show that without
some form of normalization of the norm, the gradients would vanish.

Drawing an analogy to convention CNNs, we use the maximum degree of the spherical harmonic
coefficients, lmax as the "dimension" of our data and the number of copies of the irreps as the
"channels." In the encoder, a sequence of the blocks described above decreases lmax while increasing
the number of channels c. In the latent representation, we have lmax,latent = 1 as this is necessary
for our interpolation to be equivariant. The decoder increases lmax while decreasing c to reproduce
the input.

4.2.1 Loss Function

We observe that L2 distance on the spherical harmonics is not a good metric of the distance of shapes.
This intuitively makes sense as the shape of the object is more sensitive to the coefficients of spherical
harmonics with smaller l. Thus we define our loss function in the S2 space.
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The point-wise distance of functions in an lp norm is a good candidate:

∥f1 − f2∥p =

∫
S2

(f1(x)− f2(x))
p

In practice, we implement this idea by sampling a grid over S2 and computing the point-wise distance:

L(f1, f2) =
1

n

∑
i

l(f1(Xi), f2(Xi))

Thus, our loss function is a random variable which is concentrated around the desired distance metric
for large enough n. Using Huber Loss for l empirically made the optimization more robust.

4.3 Interpolation

Given two objects p, q we would like to be able to interpolate between those in a way that disentangles
group actions and transformation in the object’s canonical form. In another words, we want to find
γp,q(t) : [0, 1] → D which is an interpolation between p, q (so γp,q(0) = p, γp,q(1) = q).

The usual method used in latent space traversal is to linearly interpolate between ϕ(p), ϕ(q) defined
as:

γ
,p,q(t) = ψ(ϕ(p) + (1− t)ϕ(q))

However, this might not respect the group actions. For instance, in a naive interpolation between
rotated versions of the same object might have out-of-distribution in the middle (Fig. 4). This
motivates the formalization of equivariant interpolation.

✅

❌

Figure 4: Pitfalls of Naive Interpolation – We need equivariant interpolation in order to preserve the
shape of objects while rotating.

4.3.1 Equivariant Interpolation

An equivariant interpolation γp,q should have the following properties:

First, a global rotation should commute with an interpolation function. Second, rotating the endpoint
q should only rotate the interpolation without changing the shape of the object.

γg·p,g·q(t) = D(g)γp,q(t) (1)
γp,g·q(t) = D(g(α(t)))γp,q(t) (2)

The choice of equivariant interpolation is not unique. We designed our interpolation as follows. Let
Rw

v be the a rotation between vectors v, w (e.g. w = Rw
v v). Then we define:
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γp,q(t) = ψ

(⊕
l

(
∥ϕl(q)∥
∥ϕl(p)∥

)t

(R
ϕl(q)
ϕl(p)

)tϕl(p)

)

In other words, each irrep is rotated independently of the others, and its norm changes as it rotates.

Given that the encoder ϕ and decoder ψ are equivariant, we need the following properties to be
satisfied in order to prove our interpolation is equivariant.

Rg·b
g·a = D(g)Rb

aD(g−1) (3)

Rg·b
a = D(g)Rb

a (4)

Given this condition, one can verify that the desired properties of an equivariant interpolation will be
satisfied (in particular D(g(α(t))) = D(g)t).

However, one can observe that Rb
a is not well defined for l > 1. In a d dimensional space, the set of

vectors orthogonal to both a, b is d− 2 dimensional. Each of the vectors in the orthogonal subspace
can be used as the rotation axis and thus for 2l + 1 = d > 3 the rotation matrix is not unique. This
forces our latent space to only l = 0, 1 irreps.

5 Experiments

We conduct three experiments. The first is an equivariance test to characterize how equivariant our
model is. The next is a reconstruction test to evaluate whether our network is capable of encoding
and decoding the shape representations. The last is an interpolation test determine whether our latent
space can be used to generate new samples.

5.1 Equivariance Test

Due to grid sampling in the conversion between spherical harmonic and SO(3) space, the model is
likely not perfectly equivariant. However, in practical use, small deviations from equivariant are
permissible. We are concerned with the equivariance of the encoder and decoder separately as during
inference, these modules will be used separately. Given encoder or decoder f , group action g, and
input spherical harmonic coefficients x, equivariance is defined as:

f(gx) = gf(x)

To measure the deviation from equivariance, we compute the mean absolute difference between f(gx)
and gf(x) for over all objects in the dataset, D. This is repeated for 10 evenly spaced rotations about
the x, y, and z axis.

ϵ(g) =
1

|D|
∑
D

|f(gx)− gf(x)|

As shown in Table 5.1, the mean error is fairly small throughout the rotation sweep. Interestingly,
the encoder error is smaller at 180 degrees, likely due to the C2 rotation symmetry of all our blocks
about the cardinal axes. The decoder error about the y axis is also small at 180 degrees, but the other
two axes still have higher error values.

5.2 Reconstruction Test

We build a dataset of n = 100 cubes with side lengths a, b, c ∼ Uniform(0.5, 2). Then, we train
our autoencoder with an encoding lmax,in = 4 and a latent lmax,latent of both 1 and 2. We train both
for 6000 epochs with each model taking around 80 minutes on a Nvidia Titan X GPU. An epoch is
defined here as a single pass through the dataset.

As shown in Fig 5, we found the lmax,latent = 1 and lmax,latent = 2 network quickly jumped to
an IOU of 84 and 92 respectively, before training more gradually over the remaining epochs. Both
networks reached an IOU of around 98 which produces visually similar reconstructed objects. The
lmax,latent = 1 network trained significantly slower than the lmax,latent = 2 network, which is
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Encoder Equivariance Deviation
Angle (deg)

Axis 0 36 72 108 144 180 216 252 288 324
x 0.000 0.044 0.039 0.040 0.043 0.010 0.045 0.040 0.043 0.048
y 0.000 0.031 0.024 0.025 0.032 0.005 0.031 0.025 0.027 0.033
z 0.000 0.018 0.022 0.023 0.028 0.013 0.026 0.030 0.029 0.030

Decoder Equivariance Deviation
x 0.000 0.026 0.036 0.030 0.014 0.023 0.015 0.030 0.036 0.026
y 0.000 0.016 0.034 0.035 0.016 0.000 0.016 0.034 0.035 0.016
z 0.000 0.014 0.028 0.037 0.038 0.034 0.038 0.037 0.028 0.015

Table 1: Equivariance Test – Mean deviation from equivariance for various rotation angles in both
the encoder and decoder.

expected due to the increase amount of information that can be stored in the larger latent space. Note
that both network eventually reached similar levels of performance, but that the lmax,latent = 2
network achieved this around epoch 1000, while the lmax,latent = 2 network required at least 3000
epochs. The lmax,latent = 2 also showed large dips in performance throughout the training, before
quickly recovering.

Empirically, we observed that the initial reconstructions fit a sphere or cylinder to the object. This
is somewhat expected as these smoother shapes would be easier to generate with the lower degree
spherical harmonic coefficients used in the latent space. However, closer fitting reconstructions need
to use the coefficients closer to lmax, requiring the network to learn to up-sample the latent space.

Figure 5: IOU over training – We show a sharp initial jump in performance, then more gradual
improvements in IOU as training progresses. Note the different rates of convergence for lmax = 1
and lmax = 2

5.3 Interpolation Test

We now train our network with an input lmax,input = 4 and two values of latent lmax,latent = {1, 2}
and two datasets with n = {2, 100}. Then we experiment interpolating between two objects p, q
using both linear interpolation and equivariant interpolation.

As we theoretically justified in section 4.3.1, in lmax,latent = 2 our interpolation is not equivariant
and thus the shape of the object changes dramatically in the middle of the interpolation (Figure 6).

Now we focus on lmax,latent = 1. In order to emphasize on efficiency of the model, we train on
only n = 2 objects. The results show that equivariant interpolation transforms between two boxes
while staying in the distribution of the boxes (7). In contrast, linear interpolation produces a blob
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✅

❌

Equivariant Interpolation

Linear Interpolation

Figure 6: Interpolation with large latent space and two boxes – We used lmax,latent = 2 and
trained on n = 2 shapes. Neither linear interpolation nor our method is equivariant in the case of
lmax,latent = 2 and the shape significantly changes.

✅

❌

Equivariant Interpolation

Linear Interpolation

Figure 7: Interpolation with small latent space and two boxes – We used lmax,latent = 1 and
trained on n = 2 shapes. Equivariant interpolation keeps the shape of a box while interpolating while
linear interpolation changes the shape.

in the middle, before returning to the shape. Finally, we trained the model with n = 100 (still
lmax,latent = 1) and observed (again) that equivariant interpolation produces a nicer interpolation
compared to linear interpolation and the shape stays in the distribution (Figure 8).

Additionally, we observed that there are similarities between linear interpolation and our equivariant
interpolation. The reason (as shown in Figure 9) is that linear interpolation approximates traversing
the arc while the rotation between the vectors is small. However, with larger rotations, the difference
between traversing the arc and the line becomes more significant.

6 Discussion

6.1 Latent Space Dimensionality

As discussed previously, we trained a variant of our model with an lmax,latent = 2 and one with
lmax,latent = 1. The lower lmax model took significantly longer to reach a similar level of perfor-
mance as the lmax = 2 model. Unfortunately, we were unable to find a way to perform equivariant
traversals in the lmax = 2 latent space, necessitating the longer training time of the lmax = 1 model
in order to perform latent space exploration. Future work may design equivariant traversal methods
for the lmax = 2 latent space in order to leverage the faster convergence of that model.

6.2 Sampling Methods

In our loss function, we utilize grid sampling to convert from irrep to S2 space. Any grid defined on
the sphere will not have uniform density, making the result of sampling potentially higher resolution
near the poles, and lower resolution at the equator. Empirically, we found little difference in training
performance between grid sampling and random sampling on the unit sphere in the loss. However,
for more detailed objects or reconstruction tasks, this may be an important aspect to examine.
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✅

❌

Equivariant Interpolation

Linear Interpolation

Figure 8: Interpolation with small latent space and 100 boxes – We used lmax,latent = 1 and
trained on n = 100 shapes. Equivariant interpolation keeps the shape of a box while interpolating
while linear interpolation changes the shape.

✅

❌
Equivariant Interpolation

Linear Interpolation

Figure 9: Linear vs Equivariant Interpolation – Intuitively, linear interpolation traverses the line
but equivariant interpolation traverses the arc. With larger rotations, the difference between these two
traversals becomes more significant.

6.3 Training Dynamics

We observe two main issues during training, vanishing gradients and local minimum.

In order to train, we make extensive use of batch normalization in the network architecture. Without
this normalization, vanishing gradients were observed after a few epochs. However, the use of
normalization potentially reduces the expressiveness of our latent space as both the norm and
direction of the latent vectors can encode information. In order to capture this more expressive latent
space, we would like to find a way to produce stable training without the use of batch normalization.

We found that training could be split into two main phases: Random to cylinder and cylinder to
boxes. Within a few epochs, we found that the network would converge to producing cylinders scaled
roughly to the size of the input boxes. This convergence is very robust to parameters such as learning
rate, loss function, or even network architecture. However, if training is continued, the network will
eventually learn to predict boxes instead of just cylinders. This takes significantly longer, often in the
range of 5000 epochs.

We believe that a likely cause of this is that the sharp corners of boxes require the use of higher degree
spherical harmonic coefficients, requiring the network to learn to up-sample the latent space more.
Future work may evaluate this claim more quantitatively.

6.4 Alternative Architectures

6.4.1 Clebsch-Gordon Networks

In testing, we built a network using tensor products and the Clebsch-Gordon transform. This network
was significantly more difficult to train than the Spherical-CNN derived network. We noticed that the
forward pass of the network was significantly slower than the Spherical-CNN architecture, likely due
to the computational cost of the tensor product and reduce operations.
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We found that the Clebsch-Gordon architecture reached the same local minimum as the Spherical-
CNN architecture of producing a cylinder of the same size of the box. However, we could not train
out of this minimum in any reasonable time.

6.4.2 Tensor Field Networks

A potential issue with the Spherical-CNN approach is that conversion from mesh to coefficients of the
spherical harmonics is lossy for any finite lmax. In effect, the resolution of the resulting coefficients
is only dependent on lmax and independent of the input data resolution, making high detail shape
generation difficult.

Future work may explore the use of point based representations of objects and architectures such
as Tensor Field Networks [17]. This would enable network output resolution to scale with input
resolution while preserving the equivariance properties of Spherical-CNNs. Previous works have
shown point cloud shape generation without equivariant networks [22], signaling that this should be
feasible in the equivariant context as well.

7 Conclusion

Leveraging the SO(3) symmetry in 3D data, we present a preliminary method to increase the data
efficiency of 3D shape generation using an SO(3) equivariant autoencoder. We demonstrate that
by encoding objects as the coefficients of the spherical harmonics and by devising an equivariant
interpolation strategy, we can generate novel shapes when training on objects from our boxes dataset.
We also demonstrate robust reconstruction results and describe the relationship between latent
dimensionality, training dynamics, and performance in an SO(3) equivariant latent space. Finally, we
highlight directions for future work including new interpolation methods and resolution preserving
SO(3) equivariant architectures. We hope that this work may serve as a foundation for future works
in SO(3) equivariant novel shape generation.

8 Implementation

Code can be found at:
https://github.com/Shayan-P/so3-equivariance-latent-space-exploration.
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