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Abstract
Probabilistic inverse graphics has the potential to revolution-
ize visual inference in the face of uncertainty. However, the
prerequisite knowledge to develop state of the art systems is
immense. In this work, we simplify the issue and target optical
digit recognition, one of the simplest inverse graphics prob-
lems known. While the task itself has largely been solved,
we aim to provide a intuitive gateway into the world of proba-
bilistic inverse graphics to ease development of more complex
systems. To this end, we present a system to recognize and
reconstruct the ten basic digits by modeling each as a collec-
tion of 2D Gaussians. Running inference on noisy point set
images, we demonstrate a success rate of 0.95 over 50 trials
per digit. Furthermore, we present two of our past attempts at
this problem and provide intuitive reasoning on their strengths
and pitfalls1.
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Introduction
From robotic manipulation to real world navigation, state
of the art visual systems are facing increasingly uncertain
worlds. While traditional deep learning based approaches
have shown great success in classic inverse graphics chal-
lenges, the discriminative nature of these systems makes them
vulnerable to anomalies like occlusions, sensor noise, and dy-
namic scenes. Recent work in probabilistic inverse graphics
(Zhou et al., 2023; Gothoskar et al., 2021) shows a promising
direction forward, leveraging probabilistic inference to allow
uncertainty quantification and more robust inference. How-
ever, the prerequisite knowledge and infrastructure to build
these systems is immense and the insights deep. This work
aims to lower the bar, providing a first entry into the world of
probabilistic inverse graphics by building one of the simplest
probabilistic inverse graphics pipelines. Rather than working
on full scene segmentation, we focus on optical digit recog-
nition and attempt to solve it with an intuitive and extensible
method. As depicted in Figure 1, we present a method to rec-
ognize digits in a noisy environment by model each digit as
a distribution of 2D Gaussians and running inference with
Importance Sampling. We demonstrate the success of our
method under assumptions about the base shape of the dig-
its and propose extensions to generalize this method to richer
datasets.

This project extends the gen.dev (Cusumano-Towner,
Saad, Lew, & Mansinghka, 2019) introduction (standard and

1Code at is available at https://github.com/elchun/gen
ocr

Figure 1: Digit Recognition in Noise. Given a noisy point
set representing a digit, our model can infer what the digit
was and create a denoised reconstruction.

bottom up), data driven, and iterative inference tutorials with
a focus on Gen’s resources for defining novel distributions.
While the final method may seem simple, we’d like the reader
to understand alternative approaches that we used to attempt
to solve the problem and likely reasons for their failure. We
think this may be valuable for readers wishing to enter the
field of probabilistic inverse graphics as it can highlight some
of the common pitfalls in designing these systems. We in-
clude all three of our attempted methods in the “Methods”
section, highlighting the lessons learned from each subse-
quent attempt.

Related Work
Classic Optical Digit Recognition
Before approaching this problem from a probabilistic lens,
we refer to prior state of the art methods from classical com-
puter vision and machine learning. A approach presented by
Yann LeCun and colleagues in their seminal 1998 paper fo-
cuses on the problem by designing a convolutional neural net-
work to recognize digits (Lecun, Bottou, Bengio, & Haffner,
1998). The network is modeled as a pyramid, working from
the pixel level to the global. Furthermore, LeCun presents
the now ubiquitous MNIST hand written digit dataset to train

gen.dev
https://github.com/elchun/gen_ocr
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and evaluate his model. More recent architectures extend
convolutional networks to work with more complex images
by adding skip connections (He, Zhang, Ren, & Sun, 2015)
or exclusively using attention mechanisms mirroring human
cognition (Vaswani et al., 2017).

While these are purely data driven discriminative ap-
proaches, we take inspiration from these methods to better
construct our probabilistic data generating process. In partic-
ular, we draw on the use of local and global features to help
make our importance sampler more robust.

Probabilistic Inverse Graphics
Aided by the development of dedicated probabilistic lan-
guages like Gen (Cusumano-Towner et al., 2019), probabilis-
tic methods have increasingly been developed for use in in-
verse graphics pipelines. Notably, 3DP3 (Gothoskar et al.,
2021) utilized a hierarchical scene graph to model objects
non-parametrically, allowing for state of the art inference in
the face of occlusions. More recently, 3D Neural Embed-
ding Likelihoods (Zhou et al., 2023) combined features from
deep learning with probabilistic methods to run 6D pose es-
timation. This method generalized well from sim to real and
showed improved robustness in uncertain conditions.

While these methods perform well, the infrastructure and
prerequisite knowledge required to develop these systems can
be daunting. Therefore, we draw similar principles from these
systems, but apply them to the much simpler domain of opti-
cal digit recognition.

Methods
Our problem is defined as follows. Given a noisy “image”
of a digit, determine what digit it is. Following the diversity
of 3D data representations seen in inverse graphics, we allow
this image to follow a traditional grid like layout or a more
unconventional system like point sets.

One of the central advantages to probabilistic methods is
the ability to encode prior information about a problem. In
scene perception, one may include potential object geometry.
In time series modeling, one may assume the target distri-
bution follows some variant of a sinusoid. Consequently, a
large amount of effort must be focused on how to encode this
prior information. These methods focus on how we design a
data generating process to encode these priors, and what the
pitfalls of each design may be.

Approach One: Inference on Pixels
Data Generating Process Our first approach looked to
deep learning for inspiration. As such, we opt to represent
our images as rectilinear images of size 9× 9 binary pixels
where digits are represented by the patterns of ones in these
matrices. In classical computer vision, one might train a con-
volutional network to parse this structure.

To encode our priors, we create matrices representing
archetypal numbers. Then, we assumed that the input images
were generated in a two step process:

Figure 2: Attempted Pixel Digits. We attempt to render dig-
its on a 9×9 grid with noise. However, note that many digits
only differ by a small number of pixels, making inference dif-
ficult.

1. A digit is chosen from 0 to 9 with equal probability.

2. The digit is rendered by a pixel wise Bernoulli process
where a pixel has a probability p of being occupied if it
is a one in the archetypal image, and a probability 1− p of
being occupied if it is a zero in the archetypal image.

When run alone, this generate noisy images of numbers as
shown in Figure. 2.
Issues Unfortunately, while these digits look distinct to hu-
man observers, we struggled to use importance sampling to
discern between the digits. While we omit a complete proof,
we have strong reason to suspect that this trouble is with the
way that importance sampling interacts with our proposal dis-
tribution.

Refer to digits “2” and “3” in Figure. 2. While obviously
distinct to human observers, in pixel space the digits only dif-
fer on the three pixels in the lower vertical line segments.
For an importance sampler to find a significant distinction
between these two images, it would need to find that these
variables were significant, then sample them in such a way
that one digit is more likely than the other. This is particu-
larly difficult with our pixel space renderer as each pixel is
entirely independent from any other pixel in the rendered im-
age. Therefore, it is difficult to determine which pixels are
important to determining which number the image represents.

An interesting contrast can be made to deep learning. In
a classic deep learning classifier, one may run the 9×9 pixel
image through a Convolutional Neural Network (CNN) to ex-
tract features at various scales. These allows the network to
find differences between the image classes at both the pixel
level as well as a more abstract level. In contrast, our prob-
lem set up here only allows us to focus on the pixel level,
making global inference difficult. Using these insights, we
focus subsequent methods on building both small and large
scale features into our data generating models.



Figure 3: Attempted Line Digits. We attempted to render
digits by sampling on along line segments in 2D space. While
visually richer, this representation is not invariant to the order
of the underlying point set.

Approach Two: Parametric Lines
Data Generating Process Moving to the continuous do-
main, we attempt to mimic the digit layout seen in the pixel
case, but provide a easier to optimize prior representation. To
do so, we describe each digit as a collection of parametric
lines. Then, to render a digit, we sample an arbitrary point on
the line and add noise.

Specifically, we create each number by defining a piece-
wise parametric line where a parameter t sweeps along the
start to the end of this line in the range t ∈ [0,1]. The seg-
ments are not necessarily continuous but each t value maps
to a unique point. Then, we follow these steps to sample a
number:

1. A digit is sampled from 0 to 9 with equal probability.

2. k time steps ti ∈ [0,1] for i ∈ {1,2, ...,k} are sampled.

3. The location µi corresponding to each ti is calculated from
the piecewise parametric line.

4. For each location, a final point is sampled from the normal
distribution whose mean is µi and standard deviation is σ=
0.05.

As shown in Figure 3, these points form a point set image
associated with the digit.

Issues We also found difficulty running importance sam-
pling on this prior distribution, however, we believe that the
underlying cause is subtly different than that of the pixel pri-
ors. Specifically, while it is now possible for importance sam-
pling to find the render variables (ti), the data generating pro-
cess is not invariant to the order of the point set.

For example, take a point set of points [p1, p2, p3] at lo-
cations [1,2,3]. We can permute this set to [p2, p1, p3] and

the resulting image will appear identical. However, the point
sets [1,2,3] and [2,1,3] look nothing alike. Likewise, in our
data generating process, the importance sampler must not just
choose the correct distribution, but also choose the correct t
for each of the points in the point set. If the ts are permuted,
as in our example, the estimated likelihood of the observed
distribution given the hypothesized prior distribution will be
extremely low. Therefore, our final attempt focuses on adding
invariance to our continuous representation, thereby avoiding
the issues of finding important variables and of finding a cor-
rect point ordering.

Approach Three: Gaussians
Learning from the issues with the previous two attempts, we
decide to continue using a point set representation of the data.
However, given the trouble with parametric lines, we realize
that any prior representation must be invariant to the order-
ing of the observed points. To this end, we draw inspira-
tion from recent work on Gaussian Splatting (Kerbl, Kopanas,
Leimkühler, & Drettakis, 2023), where a large number of 3D
Gaussians are manipulated into representing a continuous 3D
geometry. Our key insight is to model the data generating pro-
cess of a point set image as sampling from a mixture of 2D
Gaussians. Then, to represent an arbitrary digit, one can just
encode the digit as the mixture of a finite number of Gaus-
sians.

More concretely, we model the data generating process as a
multi-step sequence. First, we create a mapping of each digit
to a mixture of 2D Gaussians:

Nd =
1
n

n

∑
i=0

N (µi,Σi)

For convenience, we follow the digit design from Approach
Two and use each 2D Gaussian to model a line segment where
the center of the line is µi and the covariance is Σi. Given a
line of length l, the covariance matrix is diagonal with the
variance along the length of the line equal to σ2

long = (l/2)2

and the variance along the width equal to σ2
short = 0.002. This

ensures that the 2 sigma confidence interval of the Gaussian
covers the line.

Then for each sampled instance, we assume that

1. A digit is sampled from 0 to 9 with uniform probability.

2. A noise probability pnoise is sampled from Uni f [0,0.3]

3. For each of the k points to be rendered:

With probability 1− pnoise, the point is rendered by
sampling a point from the Gaussian mixture corresponding
to the sampled digit.

Otherwise, the point is sampled from a 2D normal dis-
tribution centered at µ = [0.5,0.5] with diagonal variances
of [0.25,0.25].

As shown in the observations of Figure 4, this produces digits
similar in appearance to those in the line approach, however



Figure 4: Model Predictions of Digits. Given noisy observations of digits, we infer the base digit and produce a denoised
version of the observations. We represent each digit as a collection of 2D Gaussians, each parameterizing a line on the digit.

this representation has several key advantages over the previ-
ous methods. Firstly, the data generation process is invariant
to the order of the observed points. Since we omit the in-
termediate variables ti, there is no need for the importance
sampler to predict the exact ordering of the observed points.
Instead, its task is reduced to simply choosing the distribution
that was most likely to have generated the observed data.

Furthermore, the continuous distribution avoids the confu-
sion found in the pixel grid cases. Since we sample each point
from a mixture of normals, we could immediately discern a
rendered “2” from a prior representing “3”, for example, since
it would be extremely unlikely to have so many points on the
vertical left of the image if the prior represented a “3”. This
increases the efficiency with which importance sampling op-
erates and enables more robust predictions.

Results
Experiment Design
We design a simple experiment to evaluate our method. For
each digit “0” to “9”, we use our data generating procedure
to sample the Gaussian representing the digit with pnoise =
0.3. Then, we use our importance sampler to infer which digit
was selected. Finally, we render the inferred digit without
noise. While this limits the interpretation of our results to
processes with the exact same data generating procedure, we
think this represents a promising preliminary result as neither
of the other methods discussed could reconstruct a sample
from the generating distribution.

Experiment Results
As shown in Fig 4, our 2D Gaussian method is able to in-
fer the identity of and reconstruct all of the digits from “0”



Digit Average success rate Average lmls

0 1.00 -53.972
1 1.00 19.873
2 1.00 -50.331
3 0.94 -47.718
4 1.00 -25.416
5 0.92 -53.985
6 0.92 -58.596
7 1.00 -20.940
8 0.86 -65.961
9 0.86 -60.580

total 0.95 -

Table 1: Success and LML. Average success rate and in-
ferred log marginal likelihood for digits 0-9 over 50 trials.

to “9”. Furthermore, as shown in Table 1, across 50 trials
for each digit, our model had an average success rate of 0.95
with a success rate of 1.0 for digits 0, 1, 2, 4, and 7. We also
recorded average log marginal likelihood for each digit, find-
ing averages in the range of -60 to -20 for all digits except “1”
which has a average lml of around 20.

Discussion
Comparison between Methods
While each data generating process produced reasonable
looking data, only the final 2D Gaussian Method allowed for
quick and accurate inference. This highlights the importance
of how the prior must be represented. In particular, we found
that the prior must:

1. Be invariant to the order of the point set.

2. Be expressive enough to differentiate between each digit.

3. Provide means for importance sampling to pick up on im-
portant variables.

Given these constraints, it is likely that similarly constructed
continuous priors will perform similarly to our 2D Gaussian
system.

Future Work
The 2D Gaussian priors can be easily extended to represent
more expressive data. For example, to represent distorted or
translated digits, one may add a sequence of parametric trans-
forms to the Gaussian distributions. Then, one could use im-
portance sampling or MCMC to infer both the base distribu-
tion and the transform’s parameters.

It is also possible to evaluate this method on a larger
dataset. Since we use a point set representation, one could
easily convert digits from the MNIST Dataset (Lecun et al.,
1998), for example, into a collection of points between (0,0)
and (1,1) and run inference. We may also be able to run

inference on data generated by the two other methods men-
tioned here. We suspect that the marginal log likelihood may
be lower as the digits in all these cases are from a slightly
different distribution.

Finally, given the ubiquity of point set representations in 3
and more dimensions, similar methods may find use in classi-
fying more complex geometry. Future work may apply simi-
lar technique to classify objects or attempt rudimentary 6 DoF
pose estimation.

Conclusion
We present a simple demonstration of inverse graphics by de-
veloping a method of inferring and reconstructing digits from
noisy 2D point set images. Seeking an intuitive methodology,
we using importance sampling with data generation using 2D
Gaussian priors. We demonstrate success on the limited case
of data rendred with our data generating process, but provide
extensions to generalize to more expressive data. We also
provide two previous attempts to model digits and insights
into why these failed and how more successful priors may be
designed. We hope this work is an interesting adventure into
the world of probabilistic inverse graphics and may provide
intuition on how more complex probabilistic inverse graphics
systems can be designed.
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