2 (650) 961-1911

Massachusetts Institute of Technology

Candidate for Bachelor of Science in Artificial Intelligence and Decision Making (Course 6-4) GPA: 5.0 / 5.0

PUBLICATIONS

EDUCATION

[1] E. Chun, A. SaLoutos, H. Kim, and S. Kim, "6-dof approach planning with reflexive grasp execution"," 2024 IEEE International Conference on Robotics and Automation (ICRA), 2024, submitted.

Ethan Chun

🗹 elchun@mit.edu | 🛅 elchun | 🏟 elchun.github.io

- [2] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling, "Local neural descriptor fields: Locally conditioned object representations for manipulation," 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.
- [3] T. Shu, C. Shallal, E. Chun, A. Shah, A. Bu, D. Levine, S. H. Yeon, M. Carney, H. Song, T.-H. Hsieh, and H. M. Herr, "Modulation of prosthetic ankle plantarflexion through direct myoelectric control of a subject-optimized neuromuscular model," IEEE Robotics and Automation Letters, 2022.

EXPERIENCE

Undergraduate Researcher, Robotic Manipulation and 3D Perception Designed, implemented, validated, and submitted novel grasp approach architecture to predict potential robotic grasping directions from raw point cloud data using a variation of the PointNet++ architecture.

• Investigated deep representations for robotic manipulation including tiny view conditioned latent diffusion models and neural radiance fields.

Learning and Intelligent Systems — Dr. Tomás Lozano-Pérez and Dr. Leslie Pack Kaelbling Undergraduate Researcher, Vision-based Robotic Manipulation

 Designed, implemented, and published Local Neural Descriptor Fields – a novel framework using latent embeddings from Convolutional Occupancy Networks to enable robust robotic grasping of household objects

Used Pytorch, Pybullet, and a Franka Panda robot to develop model architecture, data loading, data visualization systems, and a novel distance-based contrastive loss function.

Biomechatronics Group – Dr. Hugh Herr

MIT Biomimetic Robotics Lab - Dr. Sang-bae Kim

Undergraduate Researcher, Embedded Systems and Experiments

- Utilized a novel EMG control paradigm and custom powered prosthetic to restore natural gait biomechanics for a unilateral transtibial amputee and several unilateral transfemoral amputees.
- Implemented robotics control stack in C++, including communications drivers (I2C, SPI, CAN) and integrated logger.

SELECTED PROJECTS

Novel View Synthesis from Single Images with Tiny Latent Diffusion Models

- Built tiny latent diffusion models to generate novel views given a single conditioning image and relative camera transform.
- Demonstrated training times of less than two hours, allowing potential integration of LDMs into conventional robotics pipelines.

ChessBot: A Single View Perception and Manipulation System for Robotic Chess

Winner of a 2022 Outstanding Project Award in Russ Tedrake's Robotic Manipulation Course

- Created a chess playing robot in Drake simulator using ICP and RANSAC to determine all piece positions from a single depth camera image.
- Engineered simulation environment to ensure robust testing of perception algorithm.

SKILLS

Tools	PyTorch, Numpy, Pybullet, MATLAB, Git, Embedded Linux, SolidWorks
Languages Relevant Coursework	Python, C/C++, RISC-V Assembly, TypeScript Algorithms, Machine Learning, Real Analysis, Abstract Algebra, Probability Theory
Receivant coursework	regorithing, machine Learning, rearranging, instructingebra, inobability meory

ACTIVITIES

Cambridge, Massachusetts 2020 - 2024

Cambridge, Massachusetts Mar. 2021 - Jan. 2023

Cambridge, Massachusetts Jan. 2023 — Present

Cambridge, Massachusetts

Dec. 2021 — June. 2023