
Implementation Details of Surface Normal Sensing with ToF-Array and
PCA

Ethan Chun1

I. INTRODUCTION

When performing non-planar grasping, the current reflex-
ive controller struggled to differentiate target objects from
background materials and struggled to achieve antipodal
grasping. To remedy this, we begin development on a new
type of sensor, capable of detecting the surface normal of
any target it is pointed at a high update rate. We base our
platform on the VL53L8CX 8x8 Time of Flight sensor array
and the Nucleo F411RE MCU. We use principal component
analysis to extract surface normals from the distance data. In
preliminary testing, we show accurate perception of surface
normals at an update rate of 30 Hz.

II. ALGORITHM

A. High Level Overview

Our goal is to find the normal of the surface directly in
front of the sensor. We approach this by sampling a collection
of points on the surface, then fitting a plane to them. Refering
to the chart in Fig 1, we first convert the ToF sensor’s raw
distance values into points in the coordinate frame of the
sensor. Then, we use principal component analysis to fit a
plane.

B. Data Inputs

The time of flight sensor array outputs a list of ei-
ther 4 × 4 = 16 or 8 × 8 = 64 distance values in mm,
corresponding to each of the zones on the ToF array.
We set the ToF sensor to output the 4 × 4 output as
this is significantly faster. These can be called using
VL53L8A1_RANGING_SENSOR_GetDistance(...);.

C. Distance to Coordinates

Idealized Algorithm. Based on the spec sheet, the sensor
has a view frustum with an angle of 45 degrees between
opposing sides. We assume that the sensing rays corre-
sponding to each of the zones are evenly spaced between
these ranges such that their effective angles from the middle
are {−22.5,−7.5,7.5,22.5} degrees. Note, this is a pretty
large assumption and empirical testing shows that it might
not be entirely correct. Future work may calibrate this in
to determine the exact angles and directions of the zones.
Given these zones, we pre-compute a unit vector pointing
from the origin along each of the rays. This can be done at
startup or stored in a lookup table. Finally, each time we pull
from the sensor, we multiply the corresponding ray with the

1Author is with the Biomimetic Robotics Laboratory at the Department
of Mechanical Engineering, Massachusetts Institute of Technology (MIT),
Cambridge, MA, 02139, USA.

sensing distance to extract the point on the surface that the
ray intersected. Following this algorithm, we end up with an
array of 16 coordinates, each with three components.

Implementation Notes. Sometimes when looking at a
target, rays will miss the target altogether and intersect
something much further away from the sensor. We filter
these by adding a threshold to the distance value. If the
value exceed the value, we do not add the coordinate to
the coordinate array. Since this leads to a variable number
of coordinates, we keep track of the number of coordinates,
n, and use that in the subsequent steps.

D. Principal Component Analysis

Given a collection of points in R3, we want to find
the normal of the surface corresponding to these points.
Due to the presence of noise, it is not sufficient to just
compute the cross product between some number of points.
A more robust solution is to fit a plane to the points
such that the plane most closely aligns with the measured
surface. There are many ways to do so (read https://
math.stackexchange.com/questions/99299/
best-fitting-plane-given-a-set-of-points),
however, an easy to implement and robust solution is to
mean center the points, compute PCA, and use the normal of
the plane defined by the two largest principal components.
This is the smallest principal component.

Intuition. For a mean-centered collection of points in 3D
space that somewhat resemble a plane, one would expect
the location of the points to change the most along some
direction in the plane. Therefore, we expect a unit vector
representing the direction of largest variance to also lie on
the plane. Since a plane can be defined by two orthogonal
vectors, we expect the unit vector along the next highest
direction of variance that is orthogonal to the first vector to
also lie on the plane. These are exactly the first two prin-
cipal components. Finally, we know that the third principal
component must be orthogonal to the first two. Therefore,
the third and smallest principal component is the normal (or
inverse normal) of the surface.

Definition. Given a set of data X defined on vector space
V , PCA is a transformation f : V → V ′ where the first
coordinate of V ′ is along the direction of highest variance in
data X . The second coordinate of V ′ is along the direction
of next highest variance, and so on. This can either involve
dimensionality reduction where dim(V ′) < dim(V) or not,
where dim(V ′) = dim(V). The principal components are the
unit vectors in V along the directions of highest variance.

https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points
https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points
https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points

TOF Sensor Distance to
Coordinates PCA

Distance
Values Coordinates Surface

Normal

Fig. 1. Normal Sensor Data Flow – We process the raw ToF distance values to points in 3D space, then compute pca to find the surface normal.

Given a set of data X of shape n× 3, it is known that
the principal components of X are the eigenvectors of the
covariance matrix of the data, XT X . The first principal
component is the eigenvector with the highest associated
eigenvalue and so on.

For more details, I highly recommend this
chapter by Dr. Richard Wilkinson https:
//rich-d-wilkinson.github.io/MATH3030/
4.1-pca-an-informal-introduction.html.

Implementation Details. We must compute eigenvectors
numerically. This is non-trivial. Two helpful resources are the
Handbook for Automatic Computation by J. H. Wilkinson,
C. Reinsch [1] and Matrix Computations by G Golub and C
Van Loan [2].

We opt for the Jacobi method to compute eigenvalues. The
following is summarized from Golub and Van Loan’s Matrix
Computations [2].

The algorithm is defined as:
Given a symmetric A∈Rn×n and a tolerance tol, overwrite

A with V T AV .
V = In, δ = tol · ||A||F
while off (A)> δ do

Choose (p,q) so |apq|= maxi ̸= j|ai j|
[c, s] = symSchur2(A, p, q)
A = J(p,q,θ)T AJ(p,q,θ)
V =V J(p,q,θ)

end while
Here, symSchur2 is a 2 x 2 Symmetric Schur Decompo-

sition. The idea is to find a pair of indices with the largest
off-diagonal terms, then apply the Symmetric Schur Decom-
position to set the off diagonal terms to zero. Continually
applying this eventually diagonalizes the original matrix

We use an implementation by John Burkardt at
Florida State University https://people.sc.fsu.
edu/˜jburkardt/c_src/jacobi_eigenvalue/
jacobi_eigenvalue.html.

III. HARDWARE

A. Time of Flight Configuration

We use the X-Nucleo-53L8A1 shield, a Dynamixel Shield,
and a Nucleo-F411RE to test the array. To interface with the
Dynamixels, a number of configuration changes were made.
These are:

• Set i2c to ”fast mode” and set baudrate to 400000.
• Change Dynamixel usart port to use one other than the

default on the motor shield. This prevents interference
with the printf commands.

Fig. 2. Hardware Setup – We have four components: the wrist (top), the
motor dynamixel power board (bottom left), the ToF shield (bottom right
blue), and the STM32 (white).

• Connect power to the dynamixel shield (it needs both a
12v and 5v supply).

• Update clock settings in stmcube to the max settings.
This allows for the full 4Mb connection speed to the
dynamixels.

• Disable interrupts. i2c does not function well with timer
interrupts enabled.

Connecting the smaller Satel-VL53L8A breakout board
was also tested, however communication between the stm32
and the sensor was not robust. We think that the long i2c
lines created room for noise.

IV. DEMO

We produce a demonstration where a user places an object
in front of the ToF sensor and the wrist actuators move to
point in the direction of the surface normal of the object.

https://rich-d-wilkinson.github.io/MATH3030/4.1-pca-an-informal-introduction.html
https://rich-d-wilkinson.github.io/MATH3030/4.1-pca-an-informal-introduction.html
https://rich-d-wilkinson.github.io/MATH3030/4.1-pca-an-informal-introduction.html
https://people.sc.fsu.edu/~jburkardt/c_src/jacobi_eigenvalue/jacobi_eigenvalue.html
https://people.sc.fsu.edu/~jburkardt/c_src/jacobi_eigenvalue/jacobi_eigenvalue.html
https://people.sc.fsu.edu/~jburkardt/c_src/jacobi_eigenvalue/jacobi_eigenvalue.html

We also attempted a demonstration where the sensor was
mounted to the wrist. But, control with the sensor moving
proved difficult. With substantially more effort, this would
likely be feasible.

V. CONCLUSION

We use a VL53L8CX 8x8 Time of Flight sensor array
to compute the surface normal of objects placed within
view of the sensor. To visualize this, we control a 2 DoF
wrist to point in the direction of the normal. We propose
the use of PCA as an elegant and robust means to predict
the normal. This demonstration demonstrates the feasibility
of using sensor arrays for surface normal detection. Future
work may incorporate these sensors onto the robotic hand
for normal sensing of target objects to grasp.

REFERENCES

[1] A.S., J. Wilkinson, and C. Reinsch, Handbook for Automatic
Computation: Volume II: Linear Algebra (Grundlehren der
mathematischen Wissenschaften). Springer Berlin Heidelberg,
1971, ISBN: 9783642869402. [Online]. Available: https:
//link.springer.com/book/10.1007/978-3-
642-86940-2#affiliations.

[2] G. Golub and C. Van Loan, Matrix Computations (Johns
Hopkins Studies in Atlantic History & Culture). Johns Hop-
kins University Press, 1983, ISBN: 9780801830105. [On-
line]. Available: https : / / math . ecnu . edu . cn /
˜jypan / Teaching / books / 2013 % 20Matrix %
20Computations%204th.pdf.

https://link.springer.com/book/10.1007/978-3-642-86940-2#affiliations
https://link.springer.com/book/10.1007/978-3-642-86940-2#affiliations
https://link.springer.com/book/10.1007/978-3-642-86940-2#affiliations
https://math.ecnu.edu.cn/~jypan/Teaching/books/2013%20Matrix%20Computations%204th.pdf
https://math.ecnu.edu.cn/~jypan/Teaching/books/2013%20Matrix%20Computations%204th.pdf
https://math.ecnu.edu.cn/~jypan/Teaching/books/2013%20Matrix%20Computations%204th.pdf

	Introduction
	Algorithm
	High Level Overview
	Data Inputs
	Distance to Coordinates
	Principal Component Analysis

	Hardware
	Time of Flight Configuration

	Demo
	Conclusion

